Rush Center for Congenital
and Structural Heart Disease

Contents

 

 

References

 

1.      Labarthe DA, Kosinetz C, Jones TM. Epidemiology. In: Garson A Jr, Bricker JT, McNamara DG, eds. The science and practice of pediatric cardiology. Philadelphia: Lea & Febiger, 1990;135–151.

2.      Waitzman NJ, Romano PS, Scheffler RM. Estimates of the economic costs of birth defects. Inquiry 1994;33:188–205.

3.      Zak R. Molecular mechanisms of cardiac hypertrophy. In: Haber E, ed. Molecular Cardiovascular Medicine. New York: Scientific American, 1995;177–192.

4.      Gilbert SF. Developmental biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;4.

5.      Bretscher MS. How animal cells move. Sci Am 1987;257:72–76,89–90.

6.      Bray D. Cell movements. New York: Garland, 1992.

7.      Lackie JM. Cell movement and cell behaviour. London: Allen & Unwin, 1986.

8.      Dufour S, Duband JL, Kornblihtt AR, Thiery JP. The role of fibronectins in embryonic cell migrations. Trends Genet 1988;4:198–203.

9.      Hynes R. Molecular biology of fibronectin. Annu Rev Cell Biol 1985;1:67–90.

10.  Thiery JP, Duband JL, Tucker GC. Cell migration in the invertebrate embryo: role of cell adhesion and tissue environment in pattern formation. Annu Rev Cell Biol 1985;1:91–113.

11.  Boucaut JC, Darribere T, Poole TJ, et al. Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest migration in avian embryos. J Cell Biol 1984;99:1822–1830.

12.  Ruoslahti E, Pierschbacher MD. Arg-Gly-Asp: a versatile cell recognition signal. Cell 1986;44:517–518.

13.  Naidet C, Sθmθriva M, Yamada KM, Thiery JP. Peptides containing the cellattachment recognition signal Arg-Gly-Asp prevent gastrulation in Drosophila embryos. Nature 1987;325:348–350.

14.  Icardo JM, Manasek FJ. Fibronectin distribution during early chick embryo heart development. Dev Biol 1983;95:19–30.

15.  George EL, Georges-Labouesse EN, Patel-King RS, et al. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993;119:1079–1091.

16.  Gilbert SF. Developmental biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;112–113.

17.  Alberts B, Bray D, Lewis J, et al. Molecular biology of the cell. New York: Garland Publishing, 1994;1046–1047.

18.  Alberts B, Bray D, Lewis J, et al. Molecular biology of the cell. New York: Garland Publishing, 1994;963–971.

19.  Gumbiner BM, McCrea PD. Catenins as mediators of the cytoplasmic functions of cadherins. J Cell Sci 1993;17(Suppl):155–158.

20.  Gilbert SF. Developmental biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;202–243.

21.  Inagaki T, Garcia-Martinez V, Schoenwolf GC. Regulative ability of the prospective cardiogenic and vasculogenic areas of the primitive streak during avian gastrulation. Dev Dyn 1993;197:57–68.

22.  Rosenquist GC. Migration of precardiac cells from their origin in epiblast until they form the definitive heart in the chick embryo. In: Ferrans VA, Rosenquist GC, Weinstein C, eds. Cardiac morphogenesis. New York: Elsevier, 1985;44–54.

23.  Stalsberg H, DeHaan R. The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol 1969;19:128–159.

24.  Garcia-Martinez V, Schoenwolf GC. Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol 1993;159:706–719.

25.  Le Lievre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 1975;34:125–154.

26.  Virαgh S, Szabo E, Challice CE. Formation of the primitive myo- and endocardial tubes in the chicken embryo. J Mol Cell Cardiol 1989;21:123–137.

27.  Drake CJ, Jacobson AG. A survey by scanning electron microscopy of the extracellular matrix and endothelial components of the primordial chick heart. Anat Rec 1988;222:391–400.

28.  Linask KK, Lash JW. Precardiac cell migration: fibronectin localization at mesoderm–endoderm interface during directional movement. Dev Biol 1986;114:87–101.

29.  Drake CJ, LA, Walters L, Little C. Avian vasculogenesis and the distribution of collagens I, IV, laminin and fibronectin in the heart primordia. J Exp Zool 1990;255:309–322.

30.  Linask KK, Lash JW. A role for fibronectin in the migration of avian precardiac cells: 1. Dose-dependent effects of fibronectin antibody. Dev Biol 1988;129:315–323.

31.  Yang JT, Rayburn H, Hynes RO. Embryonic mesodermal defects in 5 integrin- deficient mice. Development 1993;119:1093–1105.

32.  Davis CL. Development of the human heart from its first appearance to the stage found in embryos of twenty paired somites. Carnegie Contrib Embryol 1927;19:245–28.

33.  Patten BM, Kramer TC. The initiation of contraction in the embryonic chick heart. Am J Anat 1933;53:349–375.

34.  De La Cruz MV, Sαnchez-Gσmez C, Palomino MA. The primitive cardiac regions in the straight tube heart (stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 1989;165:121–131.

35.  De La Cruz MV, Sαnchez-Gσmez C, Arteaga MM, Argόello C. Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 1977;123:661–686.

36.  Castro-Quezada A, Nadal-Ginard B, De La Cruz MV. Experimental study of the formation of the bulboventricular loop in the chick. J Embryol Exp Morphol 1972;27:623–637.

37.  Garcia-Pelaez I, Arteaga M. Experimental study of the development of the truncus arteriosus of the chick embryo heart: 1. Time of appearance. Anat Rec 1993;237:378–384.

38.  Mollier S. Die erste Anlage des Herzens bei den Wirbeltieren: Handbuch
der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere, vol 1. Hertwig O, ed. Jena, Germany: Gustav Fisher Verlangsbuchhandlung, 1906;1019–1051.

39.  Patten BM. The development of the heart. In: Gould SE, ed. The pathology of the heart. Springfield, IL: Charles C Thomas, 1968;20–88.

40.  Ho E, Shimada, Y. Formation of the epicardium studied with the scanning electron microscope. Dev Biol 1978;6:579–585.

41.  Shimada Y, Ho E. Scanning electron microscopy of the embryonic chick heart: formation of the epicardium and surface structure of the four heterotypic cells that constitute the embryonic heart. In: Van Praagh R, Takao A, eds. Etiology and morphogenesis of congenital heart disease. Mt. Kisco, NY: Futura, 1980.

42.  Shimada Y, Ho E, Toyota N. Epicardial covering over myocardial wall in the chicken embryo as seen with the scanning electron microscope. Scanning Electron Microsc 1981;2:275–280.

43.  Komiyama M, Ito K, Shimada Y. Origin and development of the epicardium in the mouse embryo. Anat Embryol 1987;176:183–189.

44.  Virαgh S, Gittenberger-de Groot AC, Poelmann RE, Kalman F. Early development of quail heart epicardium and associated vascular and glandular structures. Anat Embryol 1993;188:381–393.

45.  Virαgh S, Challice CE. Origin and differentiation of cardiac muscle cells in the mouse. J Ultrastruct Res 1973;42:1–24.

46.  Mδnner J. Experimental study on the formation of the epicardium in chick embryos. Anat Embryol 1993;187:281–289.

47.  Van den Eijnde SM, Wenink AC, Vermeij-Keers C. Origin of subepicardial cells in rat embryos. Anat Rec 1995;242:96–102.

48.  Bolender DL, Olson MD, Markwald RR. Coronary vessel vasculogenesis. Ann N Y Acad Sci 1990;588:340–344.

49.  Poelmann RE, Gittenberger-de Groot AC, Mentink MMT, et al. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 1993;73:559–568.

50.  Mjaatvedt CH, Markwald RR. Induction of an epithelial–mesenchymal transition by an in vivo adheronlike complex. Dev Biol 1989;136:118–128.

51.  Waldo KL, Willner W, Kirby ML. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am J Anat 1990;188:109–120.

52.  Tokuyasu KT. Development of myocardial circulation. In: Ferrans VJ, Rosenquist G, Weinstein C, eds. Cardiac morphogenesis. Amsterdam: Elsevier, 1985;226–237.

53.  Mikawa T, Fischman DA. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci U S A 1992;89:9504–9508.

54.  Bogers AJJC, Gittenberger-de Groot AC, Poelmann RE, et al. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol 1989;180:437–441.

55.  Waldo KL, Kumiski DH, Kirby ML. Association of the cardiac neural crest with development of the coronary arteries in the chick embryo. Anat Rec 1994;239:315–331.

56.  Hutchins GM, Kessler-Hanna A, Moore GW. Development of the coronary arteries in the embryonic human heart. Circulation 1988;77:1250–1257.

57.  Yang JT, Rayburn H, Hynes RO. Cell adhesion events mediated by 4 integrins are essential in placental and cardiac development. Development 1995;121: 549–560.

58.  Kwee L, Baldwin HS, Shen HM, et al. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 1995;121:489–503.

59.  Gurtner GC, Davis V, Li H, et al. Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 1995;9:1–14.

60.  Grohmann D. Mitotische Wachstumintensitδt des embryonalen und fetalen Hδhnchenherzens und ihre Bedeutung fόr die Entstehung von Herzmissbildungen. Z Zellforsch Mikrosk Anat 1961;55:104–122.

61.  Rychter Z. Analysis of relations between aortic arches and aorticopulmonary septation. Birth Defects 1978;14:443–448.

62.  Thompson RD, Fitzharris TP. Morphogenesis of the truncus arteriosus of the chick embryo heart: the formation and migration of mesenchymal tissue. Am J Anat 1979;154:545–556.

63.  Horstadius S. The neural crest. London: Oxford University Press, 1950.

64.  Weston JA. The migration and differentiation of neural crest cells. Adv Morphol 1970;8:41–114.

65.  Le Douarin NM. The neural crest. London: Cambridge University Press, 1982.

66.  Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aortopulmonary septation. Science 1983;220:1059–1061.

67.  Bockman DE, Kirby ML. Dependence of thymus development on derivatives of the neural crest. Science 1984;223:498–500.

68.  Tosney KW. The segregation and early migration of cranial neural crest cells in the avian embryo. Dev Biol 1982;89:13–24.

69.  Kirby ML. Cardiac morphogenesis: recent research advances. Pediatr Res 1987;21:219–224.

70.  Phillips MT, Kirby ML, Forbes G. Analysis of cranial neural crest distribution in the developing heart using quail-chick chimeras. Circ Res 1987;60:27–30.

71.  Erickson CA. Morphogenesis of the neural crest. In: Browder LW, ed. Developmental biology: a comprehensive synthesis, vol. 2. New York: Plenum, 1986.

72.  LeDouarin NM. A biological cell labeling technique and its use in experimental embryology. Dev Biol 1973;30:217–222.

73.  Kirby ML, Aronstam RS, Buccafusco JJ. Changes in cholinergic parameters associated with failure of conotruncal septation in embryonic chick hearts following neural crest ablation. Circ Res 1985;56:392–401.

74.  Stewart DE, Kirby ML, Aronstam RS. Regulation of -adrenergic receptor density in the non-innervated and denervated embryonic chick heart. J Mol Cell Cardiol 1986;18:469–475.

75.  Kirby ML, Turnage K, Hays BM. Characterization of conotruncal malformations following ablation of “cardiac” neural crest. Anat Rec 1985;213:87–93.

76.  Van Mierop LHS, Kitsche LM. Cardiovascular anomalies in DiGeorge syndrome and the importance of neural crest as a possible pathogenetic factor. Am J Cardiol 1986;58:133–137.

77.  Nishibatake M, Kirby ML, Van Mierop LHS. Pathogenesis of persistent truncus arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation 1987;75:255–264.

78.  Ikeda T, Matsuo T, Kawamoto K, et al. Bis-diamine induced defects of the branchial apparatus in rats. In: Nora JJ, Takao A, eds. Congenital heart disease: causes and processes. Mt. Kisco, NY: Futura, 1984;223–236.

79.  Daft PA, Johnston MC, Sulik KK. Abnormal heart and great vessel development following acute ethanol exposure in mice. Teratology 1986;33:93–104.

80.  Miyagawa S, Ando M, Takao A. Cardiovascular anomalies induced in fetal rats by nimustine hydrochloride. Teratology 1988;38:553–558.

81.  Miyagawa S, Kirby M. Pathogenesis of persistent truncus arteriosus induced by nimustine hydrochloride in the chick embryo. Teratology 1989;39:287–294.

82.  Lammer EJ, Chen DT, Hoar RM, et al. Retinoic acid embryopathy: a new human teratogen and a mechanistic hypothesis. N Engl J Med 1985;313:837–41.

83.  Morriss-Kay G. Retinoids in normal development and teratogenesis. Oxford, UK: Oxford University Press, 1992.

84.  Wilson JG, Warkany J. Aortic-arch and cardiac anomalies in the offspring of vitamin A deficient rats. Am J Anat 1949;85:113–155.

85.  Stewart DE, Kirby ML, Sulik KK. Hemodynamic changes in chick embryos precede heart defects after cardiac neural crest ablation. Circ Res 1986;59: 545–550.

86.  Leatherbury L, Gauldin HE, Waldo K, Kirby ML. Microcinephotography of the developing heart in neural crest ablated chick embryos. Circulation 1990;81:1047–1057.

87.  Miyagawa-Tomita S, Waldo KL, Tomita H, Kirby ML. Migration of cardiac neural crest: a temporospatial study in quail-chick chimeras at stages 18–25. Am J Anat 1991;192:79–88.

88.  Gilbert SF. Developmental biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;272–286.

89.  Noden DM. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 1983;96:144–165.

90.  Kirby ML. Plasticity and predetermination of mesencephalic and trunk neural crest transplanted into the region of the cardiac neural crest. Dev Biol 1989;134:402–412.

91.  Davis CL. The cardiac jelly of the chick embryo. Anat Rec 1924;27:201.

92.  Patten BM, Kramer TC, Barry A. Valvular action in the embryonic chick heart by localized apposition of endocardial masses. Anat Rec 1948;102:299–312.

93.  Van Mierop LHS, Alley RD, Kausel HW, Stranahan A. The anatomy and embryology of endocardial cushion defects. J Thorac Cardiovasc Surg 1962; 43:71–83.

94.  Markwald RR, Fitzharris TP, Adams-Smith WN. Structural analysis of endocardial cytodifferentiation. Dev Biol 1975;42:160–180.

95.  Fitzharris TP. Endocardial shape change in the truncus during cushion tissue formation. In: Pexieder T, ed. Mechanisms of cardiac morphogenesis and teratogenesis. New York: Raven Press, 1981;227–235.

96.  Kitten GT, Markwald RR, Bolender DL. Distribution of basement membrane antigens in cryopreserved early embryonic hearts. Anat Rec 1987;217:379–390.

97.  Markwald RR, Krug EL, Runyan RB, Kitten GT. Proteins in cardiac jelly which induce mesenchyme formation. In: Ferrans VA, Rosenquist GC, Weinstein C, eds. Cardiac morphogenesis. New York: Elsevier, 1985;60–68.

98.  Pexieder T. Prenatal development of the endocardium: a review. Scanning Electron Microsc 1981;2:223–253.

99.  Manasek FJ, Kulikowski RR. Myocardial filopodia during early heart development. Scan Electron Microsc 1981;2:281–284,306.

100.      Funderburg F, Markwald RR. Conditioning of native substrates by chondroitin sulfate proteoglycans during cardiac mesenchymal cell migration. J Cell Biol 1986;103:2475–2487.

101.      Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. Am J Anat 1977;748:85–119.

102.      Mjaatvedt CH, Krug EL, Markwald RR. An antiserum (ES1) against a particulate form of extracellular matrix blocks the transition of cardiac endothelium into mesenchyme in culture. Dev Biol 1991;145:219–230.

103.      Rezaee M, Isokawa K, Halligan N, et al. Identification of an extracellular 130-kDa protein involved in early cardiac morphogenesis. J Biol Chem 1993;268:14404–11.

104.      Runyan RB, Potts JD, Weeks DL. TGF-3-mediated tissue interaction during embryonic heart development. Mol Reprod Dev 1992;32:152–159.

105.      Potts JD, Runyan RB. Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor . Dev Biol 1989;134:392–401.

106.      Potts JD, Dagle JM, Walder JA, et al. Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor 3. Proc Natl Acad Sci
U S A 1991;88:1516–1520.

107.      Pelton RW, Saxena B, Jones M, et al. Immunohistochemical localization of TGF1, TGF2, and TGF3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 1991;115: 1091–1105.

108.      Choy M, Armstrong MT, Armstrong PB. Transforming growth factor-1 localized within the heart of the chick embryo. Anat Embryol 1991;183:345–352

109.      Lehnert SA, Akhurst RJ. Embryonic expression pattern of TGF  type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development 1988;104:263–273.

110.      Lyons KM, Pelton RW, Hogan BL. Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for Bone Morphogenetic Protein-2A (BMP-2A). Development 1990;109:833–844.

111.      Laterra J, Norton EK, Izzard CS, Culp LA. Contact formation by fibroblasts adherent to heparan sulfate-binding substrata (fibronectin or platelet factor 4). Exp Cell Res 1983;146:15–27.

112.      Wright TC, Orkin RW, Destrempes M, Kurnit DM. Increased adhesiveness of Down syndrome fetal fibroblasts in vitro. Proc Natl Acad Sci U S A 1984;81:2426–2430.

113.      Kurnit DM, Aldridge JF, Matsuoka R, Matthysse S. Increased adhesiveness of trisomy 21 cells and atrioventricular canal malformations in Down syndrome: a stochastic model. Am J Med Genet 1985;20:385–399.

114.      Icardo JM, Sanchez de Vega MJ. Spectrum of heart malformations in mice with situs solitus, situs inversus, and associated visceral heterotaxy. Circulation 1991;84:2547–2558.

115.      Cooke J. Vertebrate embryo handedness. Nature 1995;374:681.

116.      Theiler K. The house mouse: atlas of embryonic development. New York: Springer-Verlag, 1989.

117.      Brown NA, McCarthy A, Wolpert L. Development of handed body asymmetry in mammals. In: Bock GR, Marsh J, eds. Biological asymmetry and handedness. Chichester, UK: Wiley, 1991;182–196.

118.      Layton WM. Random determination of a developmental process: reversal of normal visceral asymmetry in the mouse. J Hered 1976;67:336–338.

119.      Layton WM Jr, Manasek FJ. Cardiac looping in early iv/iv mouse embryos. In: Van Praagh R, Takao A, eds. etiology and Morphogenesis of Congenital Heart Disease. Mt. Kisco, NY: Futura, 1980.

120.      Layton WM. The biology of asymmetry and the development of the cardiac loop. In: Ferrans VA, Rosenquist GC, Weinstein C, eds. Cardiac morphogenesis. New York: Elsevier, 1985;134–140.

121.      Brueckner M, D’Eustachio P, Horwich AL. Linkage mapping of a mouse gene, iv, that controls left–right asymmetry of the heart and viscera. Proc Natl Acad Sci U S A 1989;86:5035–5038.

122.      Yokoyama T, Copeland NG, Jenkins NA, et al. Reversal of left–right asymmetry: a situs inversus mutation. Science 1993;260:679–682.

123.      McCusick VA. Mendelian inheritance in man: catalogs of autosomal dominant, autosomal recessive, and X-linked phenotypes. 10th ed. Baltimore: Johns Hopkins University Press, 1992.

124.      Arnold GL, Bixler D, Girod D. Probable autosomal recessive inheritance of polysplenia, situs inversus and cardiac defects in an Amish family. Am J Med Genet 1983;16:35–42.

125.      Casey B, DeVoto M, Jones KL, Ballabio A. Mapping a gene for familial situs abnormalities to human chromosome Xq24-q27.1. Nat Genet 1993;5:403–407.

126.      Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH. Mutations of the connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med 1995;332:1323–1329.

127.      Reaume A, deSousa PA, Kulkarni S, et al. Cardiac malformations in neonatal mice lacking connexin43. Science 1995;267:1831–1834.

128.      Afzelius BA, Mossberg B. Immotile-cilia syndrome (primary ciliary dyskinesia) including Kartagener syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 1995;3943–3954.

129.      Manasek FJ. Embryonic development of the heart: 1. A light and electron
microscopic study of myocardial development in the early chick embryo.
J Morphol 1968;125:329–366.

130.      Mδnner J, Seidl W, Steding G. Correlation between the embryonic head flexures and cardiac development. Anat Embryol 1993;188:269–285.

131.      Patten BM. The formation of the cardiac loop in the chick. Am J Anat 1922;30:373–397.

132.      Manasek FJ, Monroe RG. Early cardiac morphogenesis is independent of function. Dev Biol 1972;27:584–588.

133.      Manning A, McLachlan JC. Looping of chick embryo hearts in vitro. J Anat 1990;168:257–263.

134.      Mδnner J, Seidl W, Steding G. Formation of the cervical flexure: an experimental study on chick embryos. Acta Anat 1995;152:1–10.

135.      Taber LA, Lin IE, Clark EB. Mechanics of cardiac looping. Dev Dyn 1995;203:42–50.

136.      Sissman N. Cell multiplication rates during development of the primitive cardiac tube in the chick embryo. Nature 1966;210:504–506.

137.      Stalsberg H. The origin of heart asymmetry: right and left contributions to the early chick embryo heart. Dev Biol 1969;19:109–127.

138.      Itasaki N, Nakamura H, Sumida H, Yasuda M. Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-looping in the embryonic chick heart. Anat Embryol 1991;183:29–39.

139.      Brown NA, Wolpert L. The development of handedness in left/right asymmetry. Development 1990;109:1–9.

140.      Levin M, Johnson RL, Stern CD, et al. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 1995;82:803–814.

141.      Yost HJ. Vertebrate left-right development. Cell 1995;82:689–692.

142.      Gilbert SF. Developmental biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;34–74.

143.      Gilbert SF. Developmental Biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;478–481.

144.      Slack JMW. From egg to embryo: regional specification in early development. New York: Cambridge University Press, 1991.

145.      Gonzalez-Sanchez A, Bader D. In vitro analysis of cardiac progenitor differentiation. Dev Biol 1990;139:197–209.

146.      Montgomery MO, Litvin J, Gonzalez-Sanchez A, Bader D. Staging of commitment and differentiation of avian cardiac myocytes. Dev Biol 1994;164:
63–71.

147.      Melnik N, Yutzey KE, Gannon M, Bader D. Commitment, differentiation, and diversification of avian cardiac progenitor cells. Ann N Y Acad Sci 1995;752:1–8.

148.      Doetschmann TC, Eistetter HR, Katz M, et al. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 1985;87:27–45.

149.      McBurney MW, Jones-Villeneuve EMV, Edwards MKS, Anderson PJ. Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 1982;299:165–167.

150.      Krah K, Mironov V, Risau W, Flamme I. Induction of vasculogenesis in quail blastodisc-derived embryoid bodies. Dev Biol 1994;164:123–32.

151.      Antin PB, Taylor RG, Yatskievych T. Precardiac mesoderm is specified during gastrulation in quail. Dev Dyn 1994;200:144–154.

152.      Gilbert SF. Developmental biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;493–530.

153.      Gilbert SF. Developmental biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;575–622.

154.      Spemann H. Embryonic development and induction. New Haven: Yale University Press, 1938.

155.      Gurdon JB. Embryonic induction: molecular prospects. Development 1987;99:285–306.

156.      Gilbert SF, Saxen L. Spemann’s organizer: models and molecules. Mech Dev 1993;41:73–89.

157.      Bacon RL. Self-differentiation and induction in the heart of Amblystoma. J Exp Zool 1945;98:87–121.

158.      Jacobson AG, Sater AK. Features of embryonic induction. Development 1988;104:341–359.

159.      Gannon M, Bader D. Initiation of cardiac differentiation occurs in the absence of anterior endoderm. Development 1995;121:2439–2450.

160.      Sugi Y, Lough J. Anterior endoderm is a specific effector of terminal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 1994;200:155–162.

161.      Sugi Y, Sasse J, Lough J. Inhibition of precardiac mesoderm cell proliferation by antisense oligodeoxynucleotide complementary to fibroblast growth factor-2 (FGF-2). Dev Biol 1993;157:28–37.

162.      Sugi Y, Lough J. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol 1995;168:567–574.

163.      Matzuk MM, Lu N, Vogel H, et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature 1995;374:360–363.

164.      Matzuk MM, Kumar TR, Bradley A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 1995;374:p356–360.

165.      Matzuk MM, Kumar TR, Vassalli A, et al. Functional analysis of activins during mammalian development. Nature 1995;374:354–356.

166.      Vassalli A, Matzuk MM, Gardner HAR, et al. Activin/inhibin  subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev 1994;8:414–427.

167.      Goss CM. The physiology of the embryonic mammalian heart before circulation. Am J Physiol 1942;137:146–152.

168.      Baldwin HS, Jensen KL, Solursh M. Myogenic cytodifferentiation of the precardiac mesoderm in the rat. Differentiation 1991;47:163–172.

169.      Chen Y, Huang L, Russo AF, Solursh M. Retinoic acid is enriched in Hensen’s node and is developmentally regulated in the early chicken embryo. Proc Natl Acad Sci U S A 1992;89:10056–10059.

170.      Hogan BL, Thaller C, Eichele G. Evidence that Hensen’s node is a site of retinoic acid synthesis. Nature 1992;359:237–241.

171.      Sundin O, Eichele G. An early marker of axial pattern in the chick embryo and its respecification by retinoic acid. Development 1992;114:841–852.

172.      Yutzey KE, Rhee JT, Bader D. Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development 1994;120:871–883.

173.      Yutzey KE, Bader D. Regulation of cardiomyogenic differentiation and diversification. In: Clark EB, Markwald RR, Takao A, eds. Developmental mechanisms of heart disease. Futura, NY: 1995;41–46.

174.      Kubalak SW, Miller-Hance WC, O’Brien TX, et al. Chamber-specification of atrial myosin light-chain-2 expression precedes septation during murine cardiogenesis. J Biol Chem 1994;269:16961–16970.

175.      Parker TP, Schneider MD. Growth factors, proto-oncogenes, and plasticity of the cardiac phenotype. Annu Rev Physiol 1991;53:179–200.

176.      Nadal-Ginard, Mahdavi V. Molecular basis of cardiac performance: plasticity of the myocardium generated through protein isoform switches. J Clin Invest 1989; 84:1693–1700.

177.      Moorman AFM, Lamers WH. Molecular anatomy of the developing heart. Trends Cardiovasc Med 1994;4:257–264.

178.      De Jong F, Opthof T, Wilde AAM, et al. Persisting zones of slow impulse conduction in developing chick hearts. Circ Res 1992;71:240–250.

179.      Gilbert SF. Developmental biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;371–490.

180.      Gilbert SF. Developmental biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;379–381.

181.      Young RA. RNA polymerase II. Annu Rev Biochem 1991;60:689–715.

182.      Hori R, Carey M. The role of activators in assembly of RNA polymerase II transcription complexes. Curr Opin Genet Dev 1994;4:236–244.

183.      Pabo CO, Sauer RT. Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 1992;61:1053–1095.

184.      Paranjape SM, Kamakaka RT, Kadonaga JT. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem 1994;63:265–97.

185.      Alberts B, Bray D, Lewis J, et al. Molecular biology of the cell. New York: Garland Publishing, 1994;477–506.

186.      Branden C, Tooze J. Introduction to protein structure. New York: Garland, 1991.

187.      Kirkpatrick C, Peifer M. Not just glue: cell–cell junctions as cellular signaling centers. Curr Opin Genet Dev 1995;5:56–65.

188.      Edwards DR. Cell signalling and the control of gene transcription. Trends Pharmacol Sci 1994;15:239–44.

189.      Karin M. Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr Opin Cell Biol 1994; 6:415–424.

190.      Ihle JN, Witthuhn BA, Quelle FW, et al. Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 1994;9:222–227.

191.      Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 1994;4:82–89.

192.      Lee KA. Transcriptional regulation by cAMP. Curr Opin Cell Biol 1991;3:953–959.

193.      Palczewski K, Benovic JL. G-protein-coupled receptor kinases. Trends Biochem Sci 1991;16:387–391.

194.      Levitan IB. Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 1994;56:193–212.

195.      Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995;83:835–839.

196.      Kornberg L, Juliano RL. Signal transduction from the extracellular
matrix: the integrin-tyrosine kinase connection. Trends Pharmacol Sci 1992;13:93–95.

197.      Shore P, Sharrocks AD. The MADS-box family of transcription factors. Eur J Biochem 1995;229:1–13.

198.      Norman C, Runswick M, Pollock R, Treisman R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 1988;55:989–1003.

199.      Moss JB, McQuinn TC, Schwartz RJ. The avian cardiac -actin promoter is regulated through a pair of complex elements composed of E-boxes and serum response elements that bind both positive- and negative-acting factors. J Biol Chem 1994;269:12731–12740.

200.      Pollock R, Treisman R. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev 1991;5:2327–2341.

201.      Breitbart RE, Liang CS, Smoot LB, et al. A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development 1993;118:1095–1106.

202.      Martin JF, Miano JM, Hustad CM, et al. A Mef2 gene that generates a musclespecific isoform via alternative mRNA splicing. Mol Cell Biol 1994;14:1647–1656.

203.      Edmondson DG, Lyons GE, Martin JF, Olson EN. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 1994;120:1251–1263.

204.      Lilly B, Galewsky S, Firulli AB, et al. D-MEF2: A MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis. Proc Natl Acad Sci U S A 1994;91:5662–5666.

205.      Molkentin JD, Markham BE. An M-CAT binding factor and an RSRF-related A-rich binding factor positively regulate expression of the alpha-cardiac myosin heavy-chain gene in vivo. Mol Cell Biol 1994;14:5056–65

206.      Molkentin JD, Markham BE. Myocyte-specific enhancer-binding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. J Biol Chem 1993;268:19512–19520.

207.      Chambers AE, Logan M, Kotecha S, et al. The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos. Genes Dev 1994;8:1324–34.

208.      Orkin SH. GATA-binding transcription factors in hematopoietic cells. Blood 1992;80:575–581.

209.      Evans T, Felsenfeld G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 1989;58:877–885.

210.      Tsai SF, Martin DIK, Zon LI, et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 1989;339:446–451.

211.      Laverriere AC, MacNeill C, Mueller C, et al. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 1994;269:23177–84.

212.      Kelley C, Blumberg H, Zon LI, Evans T. GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 1993;118:
817–827.

213.      Arceci RJ, King AA, Simon MC, et al. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 1993;13:2235–2246.

214.      Grιpin C, Robitaille L, Antakly T, Nemer M. Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation. Mol Cell Biol 1995;15:4095–4102.

215.      Molkentin JD, Kalvakolanu DV, Markham BE. Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol 1994;14:4947–4957.

216.      Ip HS, Wilson DB, Heikinheimo M, et al. The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. Mol Cell Biol 1994;14:7517–7526.

217.      Grιpin C, Dagnino L, Robitaille L, et al. A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol 1994;14:3115–3129.

218.      Gehring WJ, Affolter M, Bόrglin T. Homeodomain proteins. Annu Rev Biochem 1994;63:487–526.

219.      Scott MP, Tamkun JW, Hartzell GW III. The structure and function of the homeodomain. Biochim Biophys Acta 1989;989:25–48.

220.      Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 1993;118:719–729.

221.      Kim Y, Nirenberg M. Drosophila NK-homeobox genes. Proc Natl Acad Sci
U S A 1989;86:7716–7720.

222.      Azpiazu N, Frasch M. tinman and bagpipe: two homeobox genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 1993;7:1325–1340.

223.      Price M, Lazzaro D, Pohl T, et al. Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron 1992;8:241–255.

224.      Lints TJ, Parsons LM, Hartley L, et al. Nkx-2.5: A novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 1993;119:419–431.

225.      Bohinski RJ, Di Lauro R, Whitsett JA. The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis. Mol Cell Biol 1994;14:5671–5681.

226.      Komuro I, Izumo S. Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci U S A 1993;90:8145–8149.

227.      Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 1995;9:1654–1666.

228.      Weintraub H, Davis R, Tapscott S, et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 1991;251:761–766.

229.      Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 1993;75:1241–1244.

230.      Sassoon DA. Myogenic regulatory factors: dissecting their role and regulation during vertebrate embryogenesis. Dev Biol 1993;156:11–23.

231.      Thayer MJ, Tapscott SJ, Davis RL, et al. Positive autoregulation of the myogenic determination gene MyoD1. Cell 1989;58:241–248.

232.      Braun T, Bober E, Buschhausen-Denker G, et al. Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. EMBO J 1989;8:3617–3625.

233.      Edmondson DG, Olson EN. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 1989;3:628–640.

234.      Lassar AB, Buskin JN, Lockshon D, et al. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 1989;58:823–831.

235.      Sartorelli V, Webster KA, Kedes L. Muscle-specific expression of the cardiac I-actin gene requires MyoD1, CArG-box binding factor, and Sp1. Genes Dev 1990;4:1811–1822.

236.      Li H, Capetanaki Y. An E box in the desmin promoter cooperates with the E box and MEF-2 sites of a distal enhancer to direct muscle-specific transcription. EMBO J 1994;13:3580–3589.

237.      Piette J, Bessereau J, Huchet M, Changeux JP. Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor -subunit. Nature 1990;345:353–355.

238.      Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987;51:987–1000.

239.      Wright WE, Sassoon DA, Lin VK. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 1989;56:607–617.

240.      Rhodes SJ, Konieczny SF. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev 1989;3:2050–2061.

241.      Miner JH, Wold B. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A 1990;87:1089–1093.

242.      Braun T, Bober E, Winter B, et al. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J 1990;9:821–831.

243.      Braun T, Buschhausen-Denker G, Bober E, et al. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J 1989;8:701–709.

244.      Villares R, Cabrera CV. The achaete-scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 1987;50:415–424.

245.      Caudy M, Vδssin H, Brand M, et al. daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete-scute complex. Cell 1988;55:1061–1067.

246.      Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J 1988;7:2175–2183.

247.      Mellentin JD, Murre C, Donlon TA, et al. The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science 1989;246:379–382.

248.      Amati B, Land H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr Opin Genet Dev 1994; 4:102–108.

249.      Murre C, McCaw PS, Vδssin H, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 1989;58:537–544.

250.      Lassar, AB, Davis, RL, Wright WE, et al. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 1991;66:305–315.

251.      Kemp PR, Grainger DJ, Shanahan CM, et al. The Id gene is activated by serum but is not required for dedifferentiation in rat vascular smooth muscle cells. Biochem J 1991;277:285–288.

252.      Evans SM, O’Brien TX. Expression of the helix-loop-helix factor Id during mouse embryonic development. Dev Biol 1993;159:485–499.

253.      Cserjesi P, Brown D, Lyons GE, Olson EN. Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev Biol 1995;170:664–678

254.      Srivastava D, Cserjesi P, Olson EN. A subclass of bHLH proteins required for cardiac morphogenesis. Science 1995;270:1995–1999.

255.      Hollenberg SM, Sternglanz R, Cheng PF, Weintraub H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol Cell Biol 1995;15:3813–3822

256.      Cross JC, Flannery ML, Blanar MA, et al. Hxt encodes a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development 1995;121:2513–2523.

257.      Faerman A, Pearson-White S, Emerson C, Shani M. Ectopic expression of MyoD1 in mice causes prenatal lethalites. Dev Dyn 1993;196:165–173.

258.      Miner JH, Miller JB, Wold BJ. Skeletal muscle phenotypes initiated by ectopic MyoD in transgenic mouse heart. Development 1992;114:853–860.

259.      Benezra R, Davis RL, Lockshon D, et al. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 1990;61:49–59.

260.      Iavarone A, Garg P, Lasorella A, et al. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev 1994;8:1270–1284.

261.      Gu W, Schneider JW, Condorelli G, et al. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 1993;72:309–324.

262.      Thorburn AM, Walton PA, Feramisco JR. MyoD induced cell cycle arrest is associated with increased nuclear affinity of the Rb protein. Mol Biol Cell 1993;4:704–713.

263.      Schneider JW, Gu W, Zhu L, et al. Reversal of terminal differentiation mediated by p107 in Rb -/-muscle cells. Science 1994;264:1467–1471.

264.      Springhorn JP, Singh K, Kelly RA, Smith TW. Posttranscriptional regulation of Id1 activity in cardiac muscle: alternative splicing of novel Id1 transcript permits homodimerization. J Biol Chem 1994;269:5132–5136.

265.      Blackwood EM, Eisenman RN. Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991;251:
1211–1217.

266.      Packham G, Cleveland JL. c-Myc and apoptosis. Biochim Biophys Acta 1995;1242:11–28.

267.      Stanton BR, Perkins AS, Tessarollo L, et al. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev 1992;6:2235–2247.

268.      Jackson T, Allard MF, Sreenan CM, et al. The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol Cell Biol 1990;10:3709–3716.

269.      Davis AC, Wims M, Spotts GD, et al. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 1993;7:671–682.

270.      Davis A, Bradley A. Mutation of N-myc in mice: what does the phenotype tell us? Bioessays 1993;15:273–275.

271.      Sawai S, Shimono A, Wakamatsu Y, et al. Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. Development 1993;117:1445–1455.

272.      Charron J, Malynn BA, Fisher P, et al. Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev 1992;6:2248–2257.

273.      Moens CB, Stanton BR, Parada LF, Rossant J. Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus. Development 1993;119:485–499.

274.      Bόrglin TR. The TEA domain: a novel, highly conserved DNA-binding motif. Cell 1991;66:11–12

275.      Xiao JH, Davidson I, Matthes H, et al. Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 1991;65:551–568.

276.      Iannello RC, Mar JH, Ordahl CP. Characterization of a promoter element required for transcription in myocardial cells. J Biol Chem 1991;266:3309–3316.

277.      Flink IL, Edwards JG, Bahl JJ, et al. Characterization of a strong positive cis-acting element of the human beta-myosin heavy chain gene in fetal rat heart cells. J Biol Chem 1992;267:9917–9924.

278.      Farrance IK, Mar JH, Ordahl CP. M-CAT binding factor is related to the SV40 enhancer binding factor, TEF-1. J Biol Chem 1992;267:17234–17240.

279.      Shimizu N, Smith G, Izumo S. Both a ubiquitous factor mTEF-1 and a distinct muscle-specific factor bind to the M-CAT motif of the myosin heavy chain beta gene. Nucleic Acids Res 1993;21:4103–4110.

280.      Stewart AF, Larkin SB, Farrance IK, et al. Muscle-enriched TEF-1 isoforms bind M-CAT elements from muscle-specific promoters and differentially activate transcription. J Biol Chem 1994;269:3147–3150.

281.      Knotts S, Rindt H, Neumann J, Robbins J. In vivo regulation of the mouse beta myosin heavy chain gene. J Biol Chem 1994;269:31275–31282.

282.      Kariya K, Farrance IK, Simpson PC. Transcriptional enhancer factor-1 in cardiac myocytes interacts with an alpha 1-adrenergic- and beta-protein kinase C-inducible element in the rat beta-myosin heavy chain promoter. J Biol Chem 1993;268:26658–26662.

283.      Karns LR, Kariya K, Simpson PC. M-CAT, CArG, and Sp1 elements are required for alpha 1-adrenergic induction of the skeletal alpha-actin promoter during cardiac myocyte hypertrophy. Transcriptional enhancer factor-1 and protein kinase C as conserved transducers of the fetal program in cardiac growth. J Biol Chem 1995;270:410–417.

284.      MacLellan WR, Lee TC, Schwartz RJ, Schneider M. Transforming growth factor–beta response elements of the skeletal alpha-actin gene. Combinatorial action of serum response factor, YY1, and the SV40 enhancer-binding protein, TEF-1. J Biol Chem 1994;269:16754–16760.

285.      Gupta MP, Gupta M, Zak R. An E-box/M-CAT hybrid motif and cognate binding protein(s) regulate the basal muscle-specific and cAMP-inducible expression of the rat cardiac alpha-myosin heavy chain gene. J Biol Chem 1994;269:29677–29687.

286.      Chen Z, Friedrich GA Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev 1994;8:2293–2301.

287.      Petkovich M. Regulation of gene expression by vitamin A. Annu Rev Nutr 1992;12:443–471.

288.      Mangelsdorf DJ, Thummel C, Beato M, et al. Overview: the nuclear receptor superfamily: the second decade. Cell 1995;83:835–840.

289.      Morriss-Kay G, ed. Retinoids in normal development and teratogenesis. Oxford, UK: Oxford University Press, 1992.

290.      Sporn MB, Roberts AB, Goodman DS, eds. The retinoids: biology, chemistry, and medicine. 2nd ed. New York: Raven Press, 1994.

291.      Wilson JG, Warkany J. Aortic arch and cardiac anomalies in the offspring of vitamin A deficient rats. Am J Anat 1949;85:113–155.

292.      Dersch H, Zile MH. Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids. Dev Biol 1993;160:424–433.

293.      Thompson JN, Howell JM, Pitt GAJ, McLaughlin CI. The biological activity of retinoic acid in the domestic fowl and the effects of vitamin A deficiency on the chick embryo. Br J Nutr 1969;23:471–490.

294.      Lammer EJ, Chen DT, Hoar RM, et al. Retinoic acid embryopathy. N Engl J Med 1985;313:837–841.

295.      Giguθre V. Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocr Rev 1994;15:61–79.

296.      Lohnes D, Mark M, Mendelsohn C, et al. Developmental roles of the retinoic acid receptors. J Steroid Biochem Mol Biol 1995;53:475–486.

297.      Stunnenberg HG. Mechanisms of transactivation by retinoic acid receptors. Bioessays 1993;15:309–315.

298.      Leblanc BP, Stunnenberg HG. 9-Cis retinoic acid signaling: changing partners causes some excitement. Genes Dev 1995;9:1811–1816.

299.      Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995;83:841–850.

300.      Sucov HM, Dyson E, Gumeringer CL, et al. RXR mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 1994;8: 1007–1018.

301.      Li E, Sucov HM, Lee KF, et al. Normal development and growth of mice carrying a targeted disruption of the 1 retinoic acid receptor gene. Proc Natl Acad Sci U S A 1993;90:1590–1594.

302.      Lohnes D, Kastner P, Dierich A, et al. Function of retinoic acid receptor in the mouse. Cell 1993;73:643–658.

303.      Lufkin T, Lohnes D, Mark M, et al. High postnatal lethality and testis degeneration in retinoic acid receptor  mutant mice. Proc Natl Acad Sci U S A 1993;90:7225–7229.

304.      Mendelsohn C, Mark M, Dollι P, et al. Retinoic acid receptor 2 (RAR2) null mutant mice appear normal. Dev Biol 1994;166:246–258.

305.      Lohnes D, Mark M, Mendelsohn C, et al. Function of the retinoic acid receptors (RARs) during development: 1. Craniofacial and skeletal abnormalities in RAR double mutants. Development 1994;120:2723–2748.

306.      Mendelsohn C, Lohnes D, Decimo D, et al. Function of the retinoic acid receptors (RARs) during development: 2. Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 1994;120: 2749–2771.

307.      Kirby ML, Waldo KL. Role of neural crest in congenital heart disease. Circulation 1990;82:332–340.

308.      Linney E, La Mantia AS. Retinoid signaling in mouse embryos. Adv Dev Biol 1994;3:53–54.

309.      Morris-Kay GM, Murphy P, Hill RE, Davidson DR. Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphologic segmentation in the hindbrain of mouse embryos. EMBO J 1991;10:2985–2995.

310.      Gans C, Northcutt RG. Neural crest and the origin of vertebrates: a new head. Science 1983;220:268–274.

311.      Mahmood R, Flanders KC, Morriss-Kay GM. Interactions between retinoids and TGF-s in mouse morphogenesis. Development 1992; 115:67–74

312.      Morishima M, Miura S, Ando M, Takao A. Retinoic acid-induced visceroatrial heterotaxy syndrome in rat embryos. In: Clark E, Takao A, eds. Developmental cardiology: morphogenesis and function. Mt. Kisco, NY: Futura, 1990;467–484.

313.      Yasui H, Nakazawa M, Morishima M, et al. Morphological observations on the pathogenetic process of transposition of the great arteries induced by retinoic acid in mice. Circulation 1995;91:2478–2486.

314.      Osmond MK, Butler AJ, Voon FCT, Bellairs R. The effects of retinoic acid on heart formation in the early chick embryo. Development 1991;113:1405–1417.

315.      Dyson E, Sucov HM, Kubalak SW, et al. Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha -/- mice. Proc Natl Acad Sci U S A 1995;92:7386–7390.

316.      Zhou MD, Sucov HM, Evans RM, Chien KR. Retinoid-dependent pathways suppress myocardial cell hypertrophy. Proc Natl Acad Sci U S A 1995;92:7391–7395.

317.      Boylan JF, Lufkin T, Achkar CC, et al. Targeted disruption of retinoic acid receptor I (RAR) and RAR results in receptor-specific alterations in retinoic acid-mediated differentiation and retinoic acid metabolism. Mol Cell Biol 1995;15:843–851.

318.      Schultz J, Ferguson B, Sprague GF Jr. Signal transduction and growth control in yeast. Curr Opin Genet Dev 1995;5:31–33.

319.      Lew DJ, Reed SI. Cell cycle control of morphogenesis in budding yeast. Curr Opin Genet Dev 1995;5:17–23.

320.      Robb JS. Comparative basic cardiology. New York: Grune and Stratton, 1965.

321.      Gilbert SF. Developmental biology. 4th ed. Sunderland, MA: Sinauer Associates, 1994;510–518.

322.      Yuan J. Molecular control of life and death. Curr Opin Cell Biol 1995;7:211–214.

323.      Pexieder T. The tissue dynamics of heart morphogenesis: 1. The phenomena of cell death: A. Identification and morphology. Z Anat Entwicklungsgesch 1972;137:270–284.

324.      Pexieder T. The tissue dynamics of heart morphogenesis: 1. The phenomenon of cell death: B. Topography. Z Anat Entwicklungsgesch 1972;138:241–253.

325.      Pexieder T. Cell death in the morphogenesis and teratogenesis of the heart. Adv Anat Embryol Cell Biol 1975;51:3–99.

326.      Bodmer R. Heart development in Drosophila and its relationship to vertebrates. Trends Cardiovasc Med 1995;5:21–28.

327.      Wu X, Golden K, Bodmer R. Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 1995;169:619–628.

328.      Frasch M. Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 1995;374:464–467.

329.      Siegfried E, Perrimon N. Drosophila wingless: a paradigm for the function and mechanism of Wnt signaling. Bioessays 1994;16:395–404.

330.      Mullins MC, Hammerschmidt M, Haffter P, Nόsslein-Volhard C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 1994;4:189–202.

331.      Rossant J, Hopkins H. Of fin and fur: mutational analysis of vertebrate embryonic development. Genes Dev 1992;6:1–13.

332.      Fishman MC, Stainier DYR. Cardiovascular development: prospects for a genetic approach. Circ Res 1994;74:757–763.

333.      Weinstein BM, Stemple DL, Driever W, Fishman MC. gridlock, a localized heritable vascular patterning defect in the zebrafish. Nature Med 1995;1: 1143–1147.

334.      Stainier DYR, Weinstein BM, Detrich HW III, et al. cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 1995;121:3141–3150.

335.      Davis CA. Whole-mount immunohistochemistry. Methods Enzymol 1993;225:502–516.

336.      Rosen B, Beddington RS. Whole-mount in situ hybridization in the mouse embryo: gene expression in three dimensions. Trends Genet 1993;9:162–167.

337.      Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol 1951;88:49–92.

338.      Vuillemin M, Pexieder T. Normal stages of cardiac organogenesis in the mouse: 1. Development of the external shape of the heart. J Anat 1989;84:101–113.

339.      Vassall-Adams PR. The development of the atrioventricular bundle and its branches in the avian heart. J Anat 1982;134:169–183.

340.      Rychter Z. Experimental morphology of the aortic arches and the heart loop in chick embryos. Adv Morphog 1962;2:333–371.

341.      Perry MM, Sang HM. Transgenesis in chickens. Transgenic Res 1993;2:125–133.

342.      Field LJ. Transgenic mice in cardiovascular research. Annu Rev Physiol 1993;55:97–114.

343.      Dietrich WF, Miller J, Steen R, et al. A comprehensive genetic map of the mouse genome. Nature 1996;380:149–152.

344.      Nadeau JH. Maps of linkage and synteny homologies between mouse and man. Trends Genet 1989;5:82–86.

345.      Hanahan D. Transgenic mice as probes into complex systems. Science 1989;246:1265–1275.

346.      Robbins J. Gene targeting: the precise manipulation of the mammalian genome. Circ Res 1993;73:3–9.

347.      Janne J, Hyttinen JM, Peura T, et al. Transgenic bioreactors. Int J Biochem 1994;26:859–870.

348.      Singh G, Supp DM, Schreiner C, et al. legless insertional mutation: morphological, molecular, and genetic characterization. Genes Dev 1991; 5:2245–2255.

349.      Schreiner CM, Scott WJ Jr, Supp DM, Potter SS. Correlation of forelimb malformation asymmetries with visceral organ situs in the transgenic mouse insertional mutation, legless. Dev Biol 1993;158:560–562.

350.      Galli-Taliadoros LA, Sedgwick JD, Wood SA, Korner H. Gene knock-out technology: a methodological overview for the interested novice. J Immunol Meth 1995;181:1–15.

351.      Copp AJ. Death before birth: clues from gene knockouts and mutations. Trends Genet 1995;11:87–93.

352.      Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kidney development. Cell 1993;74:679–691.

353.      Brannan CL, Perkins AS, Vogel KS, et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 1994;8:1019–1029.

354.      Levιen P, Pekny M, Gebre-Medhin S, et al. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 1994;8: 1875–1887.

355.      Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature 1995;378:386–390.

356.      Gassmann M, Casagranda F, Orioli D, et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 1995;378:390–394.

357.      Lee KF, Simon H, Chen H, et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 1995;378:394–398.

358.      Kaufman MH. The atlas of mouse development. San Diego: Academic Press, 1992.

359.      Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989;121:185–199.

360.      Dubay C, Vincent M, Samani NJ, et al. Genetic determinants of diastolic and pulse pressure map to different loci in Lyon hypertensive rats. Nature Genet 1993;3:354–357.

361.      Larsen, WJ (1997a).   Human Embryology, 2nd Ed. Churchill Livingstone, NY pp 49-61.

362.      Colvin, EV (1998)  Cardiac Embryology.  In:  Garson A. Jr. et al (eds).  The Science and Practice of Pediatric Cardiology, 2nd Ed.  Williams  & Wilkins.  Baltimore pp 91-126.

363.      Pexieder, T (1978).  Development of the Outflow Tract of the Embryonic Heart.  In: Rosenquist, GC, Bergsma, D (eds).  Morphogenesis and Malformation of the Cardiovascular System.  Alan R. Liss, Inc., NY pp 29-68.

364.      Pensky B (1982).  Review of medical embryology.  McMillan Publishing Co., NY pp 291-355

365.      Larsen, WJ (1997c).   Human Embryology, 2nd Ed. Churchill Livingstone, NY pp 189-227.

366.      Van Mierop, LHS (1979).  Morphological development of the heart.  In:  Berne, RM (ed).  Handbook of physiology, the cardiovascular system.  American Physiology Society, Bethesda pp 1-28

367.      Anderson, RH, Wilkinson, JL, Becker, AE (1978).  The Bulbus Cordis.  In: Rosenquist, GC, Bergsma, D (eds).  Morphogenesis and Malformation of the Cardiovascular System.  Alan R. Liss, Inc., NY pp 1-28. 

368.      . Anderson RH (1991). Simplifying the understanding of congenital malformation of the heart.  Int J of Cardiol. 32: 131-142

369.      Becker, AE, Anderson, RH (1984).  Cardiac Embryology.  In:  Nora, JJ, Talao, A (eds).  Congenital Heart Disease:  Causes and Processes.  Futura Publishing Company, NY.  pp 339-358.

370.      Wenink, ACG, Gittenberger-deGroot (1985).  The Role of Atrioventricular Endocardial Cushion in the Septation of the Heart.  Int J of Cardiol.   8: 25-44.

371.      Kathiriya IS. Srivastava D (2000). Left-right asymmetry and cardiac looping: implications for cardiac development and congenital heart disease. American Journal of Medical Genetics. 97(4):271-9

372.      Kirby ML, Waldo KL (1990)  Role of neural crest in congenital heart disease.  Circulation 82:232-340

373.      McQuinn, TC, Takao, A (1997). Experimental approaches to cardiac development.  In The Science and Practice of Pediatric Cardiology, editors Garson, A, Briker JT, Fisher DJ, Neish SR.  Williams & Wilkins. Pp 53-90

374.      Van Mierop, LHS (1986).  Cardiovascular anomalies in DiGeorge Syndrome ans importance of neural crest as a possible pathogenetic factor.  Am J Cardiol  58:133-137.

375.      Larsen, WJ (1997b).   Human Embryology, 2nd Ed. Churchill Livingstone, NY pp 151-188.

376.      McGowan, Jr. FX (1992).  Cardiovascular and airway interactions.  Int Anesthesiol Clin. 30(4):21-44

377.      Wenink ACG (1986)  Embryology of the mitral valve.  Int J Cardiol 11:75-84

378.      Steding, G, Seidl, W (1984).  Cardiac Septation in Normal Development.  In:  Nora, JJ, Talao, A (eds).  Congenital Heart Disease: Causes and Processes.  Futura Publishing Company, NY pp 481-500

379.      Anderson RH (1986)  Description of Ventricular septal defect - or how long is a piece of string?  Int J Cardiol  13: 267-278

380.      Los, JA (1978). Cardiac Septation and Development of the Aorta, Pulmonary Trunk, and Pulmonary Veins.  In:  Rosenquist, GC, Bergsma, D (eds).  Morphogenesis and Malformations of the Cardiovascular System.  Alan R. Lis, Inc., NY pp 109-138.

381.      McBride RE (1981) Development of the outflow tract and closure of the interventricular septum.  Am J Anat 106: 309-331

382.      Morse, DE (1978).  Scanning Electron Microscopy of the Developing Septa in the Chick Heart.  In: Rosenquist, GC, Bergsma, D (eds).  Morphogenesis and Malformations of the Cardiovascular System.  Alan R. Lis, Inc., NY pp 91-107.

383.      Bartelings, MM et al (1986).  Contribution of the Aortopulmonary Septum to the Muscular Outlet Septum in the Human Heart.  Acta Morphol Neerl-Scand.  24:181-192.

384.      Pexieder, T, Janecek, P  (1984).  Organogenesis of the Human Embryonic and Early Fetal Heart as Studied by Microdissection and SEM.  In:  Nora, JJ, Talao, A (eds).  Congenital Heart Disease:  Causes and Processes.  Futura Publishing Company, NY  pp 401-422.

385.      Thompson RP (1985)  Morphogenesis of human cardiac outflow.  Anat Rec  213: 578-586.

386.      Bartelings, MM (1989).  The Outflow Tract of the Heart - Embryologic and Morphologic Correlations.  Int J Cardiol (22): 289-300.

387.      Abdulla RI. Slott EF. Kirby ML. Proteins associated with cardiac neural crest in the pharyngeal region of early chick embryos. Pediatric Research. 33(1):43-7, 1993

388.      Kirby, ML, Waldo, KL (1995). Neural crest and cardiovascular patterning. Circulation Research 77(2) pp 211-215

389.      Bartelings, MM, Gittenberger-deGroot, AC (1988).  The Arterial Orifice Level in the Early Human Embryo.  Anat Embryol.  177:537-542

390.      Bartelings, MM (1990).  The Outflow Tract of the Heart.   Introduction 9-11.

391.      Moorman AF, de Jong F, Denyn MM, wt al (1998). Development of the cardiac conduction system. Circulation Research. 82(6):629-44